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ABSTRACT
We are constantly exposed to visually rich, oftentimes cluttered,
environments. Previous studies have demonstrated the negative
effects of clutter on visual search behavior and various oculomo-
tor metrics. However, little is known about the consequences of
clutter on other cognitive processes, like learning and memory. In
the present study, we explored the effects of scene clutter on gaze
behavior during a learning task and whether these gaze patterns
influenced memory performance in a later cued recall task. Using
spatial density analysis, we found that a higher degree of scene
clutter resulted in more dispersed gaze behavior during the learn-
ing task. Additionally, participants recalled target locations less
precisely in cluttered than in uncluttered scenes during the recall
task. These findings have important implications for theories link-
ing exploratory viewing with memory performance as well as for
making recommendations on how interior spaces could be better
organized to facilitate daily living.
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1 INTRODUCTION
The visual characteristics of our surrounding environment play a
major role in how we perceive and process information [Rodrigues
and Pandeirada, 2020]. One such characteristic is visual clutter (VC),
which refers to a state of an excessive number of poorly organized
objects in a scene [Soojin et al., 2015]. VC can be found in a wide
range of interior spaces (e.g., classrooms, offices, living rooms, etc.)
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with a detrimental impact on critical cognitive processes, such as
visual search, and several eye movement metrics. Therefore, a better
understanding of the functional consequences of VC on cognitive
functioning and eye movements is of fundamental importance to
guiding everyday actions and natural behavior.

The effects of VC have been studied more thoroughly in the
context of visual search. Previous studies have demonstrated that
VC increases search times and error rates in visual search tasks
using images of real-world scenes [Asher et al., 2013; Henderson et
al., 2009], images of different types of cities [Neider and Zelinsky,
2011], images of bags with personal belongings [Bravo and Farid,
2008], simulated graphics programs [Moacdieh and Sarter, 2017]
and aeronautical charts [Beck et al., 2010; Beck et al., 2012]. Apart
from these decrements in behavioral performance, VC has also
been shown to influence several eye movement metrics. Specifically,
participants tend to make more fixations [Beck et al., 2010; Beck
et al., 2012], have longer decision times (total search time – time
to the first fixation to the target) [Neider and Zelinsky, 2011] and
fixation durations [Delmas et al., 2022; Henderson et al., 2009] as
well as move their eyes less directly to the target, as indicated by
scan path ratios [Neider and Zelinsky, 2011] when searching under
highly cluttered compared to uncluttered conditions. In sum, these
findings suggest that VC affects visual search performance broadly,
both in terms of behavioral and eye movement metrics.

Although previous studies have demonstrated the detrimental
impact of VC on visual search behavior, there are a few issues that
have not yet been addressed. One issue pertains to the fact that most
VC studies have employed one-off visual search tasks, i.e., tasks that
participants had to search for the target only once. What happens
in cases of repeated exposure to VC? In one study, [Raines et al.,
2014] tested people with hoarding disorder, a condition associated
with the acquisition and storing of an excessive number of items
in a chaotic manner, with a sustained attention task and a verbal
learning task in a cluttered and non-cluttered room. They found that
task performance did not differ between the two clutter conditions,
thus arguing that repeated exposures to cluttered environments
due to hoarding may have resulted in habituation, which in turn
attenuated the negative effects of clutter on cognitive processes. In
another study, [Võ and Wolfe, 2013] asked participants to perform
a repeated visual search task where they had to find objects that
were placed in semantically-inconsistent locations within scenes (a
condition that may mimic a state of VC). Participants became faster
at finding the target object as blocks progressed, which the authors
attributed to the greater involvement of episodic memory to guide
the search process when no semantic information was available.
Nevertheless, this study aimed to examine the conditions under
which different types of memory (semantic vs. episodic) guided
repeated search, still, leaving unanswered how well participants

https://doi.org/10.1145/3517031.3529623
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3517031.3529623


ETRA ’22, June 08–11, 2022, Seattle, WA, USA Christos Gkoumas and Andria Shimi

learn target locations in scenes with different levels of VC, to which
they have been repeatedly exposed.

A second related issue is that memory performance for
previously-searched targets has not been directly examined in previ-
ous VC studies. Therefore, measuring the effects of VC on processes
other than visual search, such as the formation of long-term mem-
ory representations, can extend significantly our knowledge on this
topic.

A third issue is related to the underutilization of specific eye-
tracking metrics in the VC literature. One such metric is spatial
density [also referred to as stationary gaze entropy, Shiferaw et
al., 2019], i.e., the spatial dispersion of fixations on a display or
interface [Goldberg and Kotval, 1999; Moacdieh and Sarter, 2015].
A pattern of fixations spread all over the display indicates greater
exploratory viewing resulting from extensive processing of infor-
mation. Contrary, fixations covering a small area of the display
are thought to reflect a structured and more directed path towards
a potential target. In a recent study, [Moacdieh and Sarter, 2017]
investigated the effects of two core components of display clutter,
i.e., data density and organization, on spatial density in a simulated
graphics program. They found that increases in data density and
low levels of organization led to more dispersed gaze behavior, thus
rendering the use of spatial density analysis a sensitive and reliable
measure of clutter [see also Kanaan and Moacdieh, 2021]. In addi-
tion, spatial density has been used as an index of task load, with
increased load associated with more diffused allocation of attention
[Di Stasi et al., 2016]. To our knowledge, spatial density analysis
has not been used in studies with naturalistic images of scenes and
manipulations of VC.

To address these issues, we employed two tasks, namely a search-
based learning (SBL) and a cued recall (CR) task and recorded par-
ticipants’ eye movements while carrying out the tasks. In the SBL
task, participants were asked to detect and explicitly memorize
the location of targets presented within cluttered and uncluttered
scenes over four learning blocks. After a delay, their long-term
memory for these locations was probed in a CR task. To obtain a
more thorough understanding of how VC influences SBL, we used
three eye-tracking metrics. Primarily, we were interested in fixation
spatial density (spread metric), which reflected the degree of visual
exploration of scenes by capturing how dispersed fixation locations
were. Secondarily, we measured average saccade length (directness
metric), which captured characteristics of the sequence of fixation
locations. Finally, we measured fixation durations (duration metric),
as an index of in-depth processing of information [Gameiro et al.,
2017; for a review of these metrics see Moacdieh and Sarter, 2015].
Additionally, we examined the relationship between these metrics
during the SBL task and the recall performance for target locations
in the CR task. This relation was important to address, especially in
light of recent findings suggesting that greater visual exploration
during scene encoding was linked to better performance in a sub-
sequent memory task [Fehlmann et al., 2020; Ramey et al., 2020].

In the SBL task, we hypothesized that fixations will be (1) more
dispersed, indicating exhaustive visual exploration, (2) closer to
each other, and (3) last longer in cluttered than in uncluttered
scenes. Fourthly, we predicted that, in the CR task, memory for
target locations will be equally precise in both clutter scenes, based
on recent findings indicating that once participants have learned

the location of targets, VC does not influence memory performance
[Gkoumas and Shimi, 2021]. Lastly, we expected gaze dispersion
patterns during learning to be strongly associated with memory
performance in the CR task.

2 METHODS
2.1 Participants
A total of 29 participants (21 females, Mage= 20.9 ± 4.44 years,
five left-handed) aged 18 to 38 years old were recruited from the
Department of Psychology of the University of Cyprus. Participants
had normal or corrected-to-normal vision and reported no history
of neurological or psychiatric impairments. All participants gave
informed consent before participating in the study and received
course credit for their participation. The study was approved by
the Cyprus National Bioethics Committee.

2.2 Apparatus and Procedure
2.2.1 Equipment. Eye movements were collected using a GP3
HD eye tracker (Gazepoint Research Inc., Canada) with a sampling
frequency of 150 Hz and with a reported accuracy of 0.5-1° of visual
angle. Participants sat 65 cm away from a Philips 223V monitor
(21.5 inches, 60 Hz) with a screen resolution of 1920 x 1080 pixels.
To avoid unnecessary head movements during the experimental
session, participants were placed in a chin and forehead rest.

2.2.2 Stimuli. Study materials included 72 images of indoor
scenes (1920 x 1080 pixels) whereas five additional images were used
in practice trials at the beginning of each task. Image classification
into cluttered (hereafter high clutter) or uncluttered (heareafter low
clutter) scenes was based on a two-stage process, including subjec-
tive ratings of clutter by human observers and the well-established
computational measure of edge density (see Supplementary Material
for a full description of the clutter rating procedure). All images
illustrated scenes and did not include any people or animals to
avoid interference from distracting stimuli. The target object in the
SBL task was a small golden star (20 x 20 pixels). This semantically
meaningless target was used to ensure that its location could not
be predicted by contextual scene-related information.

2.2.3 Experimental Tasks. Participants completed two tasks,
namely a search-based learning and a cued recall task.

Search-based learning task. In this task, participants had to detect
and explicitly memorize the location of a target star superimposed
on cluttered and uncluttered scenes. Participants were presented
with 72 images of naturalistic scenes. These were presented sequen-
tially and in random order within a block and were repeated over
four blocks. Each trial began with a fixation cross at the center of
the screen (black cross in grey background), which participants
fixated for 500 milliseconds (ms). Subsequently, a new scene ap-
peared on the screen and participants had 35 seconds maximum to
detect and learn the unique location of a target star for an upcoming
memory test. Once they detected the target star, they indicated its
location by clicking on it using the mouse while fixating their gaze
on the star. Their response was marked as accurate if their click
and gaze (at the time of response) were within 50 and 100 pixels
around the target respectively. In that case, a feedback message
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(green checkmark in grey background) appeared on the screen for
700 ms. If they clicked outside this boundary or if the time elapsed,
the appropriate message was displayed depending on the condition
(a red X or a clock, respectively), and their response was considered
incorrect. In half the images (36) the star was located on the right
side of the scene (18 top right, 18 bottom right), and in the remain-
ing half, it was located on the left side (18 top left, 18 bottom left).
The location of the star was counterbalanced across scenes and
participants. Participants were given short self-paced breaks every
24 trials and at the end of each block (72 trials), at which they were
informed about their accuracy (i.e., the number of stars they had
collected). A built-in 9-point calibration procedure was run before
the main task and was repeated at the end of each block if needed.
A calibration score was only accepted if the average calibration
error was below 50 pixels or 1° degree of visual angle.

Cued recall task. In this task, participants were presented with
the same scenes they studied during the SBL task, but this time
without the target star. Each trial began with a fixation cross at the
center of the screen, which participants fixated for 500ms to pro-
ceed. Then, a previously-studied scene appeared, and participants
had 35 seconds to recall the target location and indicate it using the
mouse. After each response, at the end of each trial, participants
had 20 seconds to rate their confidence, on a 5-point scale (1=Not at
all, 2=Slightly, 3=Moderately, 4=Fairly, 5= Completely), regarding
the star location they indicated. Performance in the CR task was
measured using memory precision, which is the Euclidean distance
(in pixels) between the recalled location indicated by each partici-
pant and the actual location of the star in the SBL task. Calibration
procedures and scores were similar to those in the SBL task.

2.2.4 Procedure. Participants were tested individually in a dimly
lit laboratory room at the University of Cyprus. At the beginning,
the examiner introduced participants to the study procedures and
explained the use and purpose of the chin and forehead rest. Before
each task, the examiner explained the trial sequence using printed
screenshots of an example trial. Then, the height of the chin and
forehead rest was adjusted to fit the participant’s needs and the
experimenter ensured that the participant had a comfortable seat.
A custom 9-point calibration routine preceded each task until an
acceptable calibration error score was obtained. The calibration
routine was also executed during the SBL task if needed. Given the
goals of the study, participants first carried out the SBL task and
then the CR task, with a 10-minute break in-between.

2.3 Data Pre-processing
Our preprocessing pipeline was executed in four steps [Duchowski,
2017]. The first step involved discarding missing points from raw
data (e.g., eye blinks, gaze coordinates out of screen range). Second,
we computed the Euclidean distance between consecutive gaze sam-

ples (for x and y gaze coordinates) using
√
(x2 − x1)

2 + (y2 − y1)
2

, where (x1,y1) and (x2,y2) represented the pixel coordinates of
two consecutive gaze samples. Third, the time difference between
consecutive samples was computed by subtracting the timestamp of
the previous sample from that of the current sample. Gaze velocities,
θ , were computed using the distance traversed by the eyes divided

by the sample-to-sample change in time. Finally, we converted
velocities from pixels/s to degrees of visual angle (°)/s.

2.3.1 Filtering and denoising. Eye-tracking data correspond-
ing to unwanted recorded segments (breaks, practice trials, eye
blinks, out of range values) were discarded before proceeding to
event detection. Samples, where gaze velocity exceeded 1000°/s,
were also removed as they probably represented unphysiologically
fast eye movements [Nyström and Holmqvist, 2010]. Finally, a
second-order polynomial Savitzky-Golay filter with a width of 11
samples (∼73 ms) was applied to gaze velocity data to smooth the
signal and account for noise before event detection.

2.3.2 Event Detection algorithm. We used the Velocity-
Threshold Identification (I-VT) algorithm to categorize gaze samples
as fixation or saccades [Salvucci and Goldberg, 2000]. According to
the I-VT algorithm, gaze samples below a certain velocity threshold
are marked as fixation points, otherwise, they are considered to be
part of a saccade. Consecutive fixation points are grouped into a
fixation group, whose centroid is the mean of all points in the same
fixation group. In our study, gaze samples with velocities below
120°/s were classified as fixations. A minimum duration of 50 ms
was selected for fixations [Nuthmann, 2017].

2.4 Spatial Density Analysis
In the present study, we used spatial density analysis to examine
how different levels of scene clutter influence fixation spatial distri-
bution patterns [Goldberg and Kotval, 1999; Moacdieh and Sarter,
2015]. We divided each image into a 15x10 grid (150 grid cells in to-
tal), with each grid cell covering 128x108 pixels, as shown in Figure
1. The spatial density score was then calculated as the percentage
(%) of the total number of grid cells that contained at least one
fixation point divided by the total number of grid cells.

3 RESULTS
Data analyses were performed with custom-made scripts in Python.
Unless otherwise stated, the data were analyzed using a two-way
repeated-measures Analysis of Variance (RM ANOVA) with learn-
ing blocks (Block 1, 2, 3, 4) and scene clutter level (uncluttered vs.
cluttered) as independent factors. Assumption of normality was as-
sessed using the Shapiro-Wilk test, visual inspection of histograms
and Q-Q plots, and by calculating the ratios of skewness and kur-
tosis to their standard errors, respectively. Greenhouse-Geisser
correction is reported in case of sphericity violations. Bonferroni
correction for multiple comparisons was used when necessary. Eye
tracking data from one participant were not stored properly due to
technical issues, therefore we report findings from 28 participants
unless otherwise specified. In the SBL task, scenes in which par-
ticipants detected the target in less than two of the four learning
blocks (<50%) were discarded, as it cast doubts on how well they
learned the location of the target (scenes excluded: 1.57%). From
the remaining scenes, only those in which participants detected the
target successfully were included in the analyses presented here.
For example, if a target was detected in three out of four learning
blocks for scene number 25, the scene was included in the analysis
but only the three successful blocks were taken into account and
the other one was excluded (trials excluded: 1.84%).
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Figure 1: Examples of spatial density analysis for an uncluttered (left) and a cluttered (right) scene used in our study. White
grids contained at least one fixation. On the left uncluttered image, 11 grids were fixated resulting in a spatial density score of
7.3% (11*100/150). On the right cluttered image, the spatial density score was 16% (24*100/150). Grid cells containing the letter
T correspond to the location of the target in the scene for a participant. Left image via pxfuel.com, right image “2012-145 My
Messy Room” by Denise Krebs is licensed under CC BY 2.0/Gridded from original.

3.1 Search-based Learning task
Initially, we conducted an RM ANOVA with fixation spatial density
as the dependent variable. Results showed that overall, participants
hadmore dispersed gaze in cluttered (M= 7.65% , SD= 2.30%) than in
uncluttered scenes (M= 4.61% , SD= 1.44%), F (1,27)=237.52, p<.001,
η2p=.897. Furthermore, gaze patterns became less dispersed as the
learning blocks progressed F (1.90,51.46)=70.65, p<.001, η2p=.723
(Block 1: 7.64% , Block 2: 6.65% , Block 3: 5.59% , Block 4: 4.64% ,
all post hoc comparisons were p<.001). These main effects were
also accompanied by a significant clutter level x learning block
interaction F (3,81)=8.59, p<.001, η2p=.241. Post-hoc comparisons
indicated that the interaction was driven by diminishing differences
in spatial density between the two clutter conditions over blocks.
Figure 2 shows the results.

We then extracted regression slopes for all participants for the
two clutter levels. Here, slopes represented how much spatial den-
sity improved over the blocks in each clutter level or, in other words,
how fixation spatial distribution became less dispersed. The analy-
sis of slopes revealed that participants showed greater improvement
in spatial density over the blocks in cluttered (M= -1.23, SD=0.69)
than in uncluttered scenes (M= -0.78, SD=0.48), t (27) = 4.41, p<.001
(the more negative the slope the greater the improvement over
blocks).

Following spatial density analyses, we examined two other vari-
ables of interest, i.e., average saccade length (in pixels) and aver-
age fixation durations. Average saccade length indicates the dis-
tance traveled by the eyes considering multiple fixation points,
whereas average fixation duration indicates the time during which
the eyes fixated on the same or relatively the same location while
participants viewed the scene. Results from the RM ANOVA, with
average saccade length as the dependent variable, showed that
participants made significantly longer saccadic movements in clut-
tered (M= 321 pixels, SD= 49 pixels) than in uncluttered scenes
(M= 311 pixels, SD= 54 pixels), F (1,27)=13.87, p<.001, η2p=.339. In
addition, the average saccade length decreased significantly over
blocks (F (1.97,53.21)=5.12, p=.009, η2p=.159), from 325 pixels (SD
=49 pixels) in Block 1 to 321 pixels (SD = 46 pixels) in Block 2, 313
pixels (SD = 52 pixels) in Block 3 and 306 pixels (SD = 56 pixels)

Figure 2: Spatial density (%) in each learning block for clut-
tered (solid line) and uncluttered (dashed line) scenes. Rib-
bons represent 95% confidence intervals.

in Block 4 (all post-hoc comparisons were significant, p<0.05). The
interaction between scene clutter and learning blocks for average
saccade length did not reach significance (p>0.05). Finally, results
from the RM ANOVA with average fixation durations as the depen-
dent variable (one participant had consistently outlying values and
was excluded from this analysis) revealed only amain effect of scene
clutter, F (1,26) = 59.81, p<0.001, η2p=.697, with longer fixations
in uncluttered (M= 335 milliseconds, SD=79.2 milliseconds) than
in cluttered scenes (M= 301 milliseconds, SD=61.7 milliseconds),
which was a counterintuitive finding.

3.2 Cued Recall task
A paired-sample t-test was conducted to examine the effects of
scene clutter level on memory precision. Results showed that par-
ticipants recalled target locations more precisely in uncluttered
(M= 194 pixels, SD= 147.1 pixels) than in cluttered scenes (M=
230.8 pixels, SD= 160.6 pixels), t(27)=3.22, p=.003, d =.61. Since
memory precision represented the distance of the participant’s re-
sponse from the target location in pixels, smaller values of precision
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indicate that participants had better memory representations of the
target location.

To further investigate the relationship between eye movement
metrics (i.e., spatial density, average saccade length, average fix-
ation duration) during the SBL task and recall of target locations
during the CR task, we fitted two multiple regression models. For
uncluttered scenes, spatial density in the last learning block (4th)
and the slope of spatial density across blocks explained 54% of the
variance of recall performance. The multiple regression model was
statistically significant, F (2, 25) = 16.44, p < .001, adj. R2 = .54, with
both variables having statistically significant contribution to the
prediction (p<0.001). For cluttered scenes, spatial density in the last
learning block (4th) and the slope of spatial density across blocks
predicted recall performance significantly, F (2, 25) = 15.25 p < .001,
adj. R2 = .51. The two variables added significantly to the prediction
(p<0.001).

4 DISCUSSION
The goals of this study were to examine the impact of scene clutter
on gaze behavior during an SBL task and on recall performance
for target locations in a subsequent CR task. In addition, we were
interested in identifying eye gaze markers during the SBL task
that predicted memory performance in the CR task, thus providing
new insights on howgaze behavior at encoding under differential
VC predicts performance at retrieval. To this end, fixation spatial
density, average saccade length, and average fixation durations
were measured while participants searched and memorized the
location of a target within cluttered and uncluttered scenes over
multiple blocks. We then examined the extent to which these three
metrics explained the observed performance in a CR task for target
locations in the previously-studied scenes.

Our first hypothesis suggested that fixations will be more dis-
persed in cluttered than in uncluttered scenes during the SBL task.
Using spatial density analysis, we found that gaze dispersion was
indeed greater in cluttered than in uncluttered scenes. This finding
is in line with previous VC studies that have reported that spatial
density is a sensitive measure to capture the effects of clutter on
search performance [Kanaan and Moacdieh, 2021; Moacdieh and
Sarter, 2017]. Here, we extend past findings by showing the effects
of VC on spatial density using complex images of naturalistic scenes,
and a different experimental paradigm, in which participants had
to memorize the location of targets. The dense amount of informa-
tion in cluttered scenes likely promotes a more explorative viewing
behavior compared to the information sparsity observed in unclut-
tered scenes [Shiferaw et al., 2019]. Moreover, we observed that
the difference in spatial density between cluttered and uncluttered
scenes remained over blocks, despite getting smaller. This finding
suggests that changes in spatial density are sensitive both to the
amount of scene clutter and to the number of times exposed to
the same scenes. Although previous research in adults with hoard-
ing disorder demonstrated that information processing is largely
independent of the level of clutter in the environment [Raines et
al., 2014], our findings suggest that this is not the case for healthy
young adults.

Our second hypothesis posited that fixations will be closer to
each other in cluttered than in uncluttered scenes, as indicated by

shorter average saccade length in cluttered than uncluttered scenes.
However, we found that participants made, on average, longer sac-
cadic movements in cluttered than uncluttered scenes. Previous
research on the effects of VC on mean saccade length has provided
mixed findings. For instance, [Henderson et al., 2009] found no
effects of clutter on mean saccade length in a visual search task
using scene photographs. In contrast, [Moacdieh and Sarter, 2017]
reported that participants made longer saccades while searching
low density, well-organized displays in a simulated graphics pro-
gram compared to high density, poorly-organized displays. One
potential explanation for our results may relate to the nature of
the task, that is, participants had to detect and memorize the target
locations for an upcoming memory test instead of simply searching
for them as in past VC studies. It may be the case that participants
strategically made longer saccadic movements in cluttered scenes
as this would help them scan as much of the scene as possible
and therefore increase their chances of detecting the target and
memorizing its location for the upcoming memory test.

Contrary to our third hypothesis about average fixation durations,
we found that fixations lasted longer in uncluttered than in clut-
tered scenes. It is important to note that this difference between the
two clutter levels did not change over blocks, providing evidence
that it may reflect baseline differences in how participants sampled
information under the two clutter levels. However, this finding
stands in stark contrast to a well-established and widely replicated
finding in VC literature, which suggests that higher levels of clutter
prolong fixation durations [Delmas et al., 2022; Henderson et al.,
2009; Moacdieh and Sarter, 2017]. Thus, what may explain the con-
flicting finding between our study and past studies? In our view, it
seems possible that task demands influenced participants’ fixation
duration [Nuthmann, 2017]. As with average saccade length, partic-
ipants may have found it costly to fixate for long in a few locations
only, given the amount of to-be-scanned information in a cluttered
scene, and opted instead for shorter fixations, as this would allow
them to scan a much wider proportion of a cluttered scene, and
therefore maximize their chances of detecting the target.

Taken together, the analysis of the three eye movement met-
rics has yielded new insights regarding the strategies that partici-
pants used during the SBL task. Specifically, participants explored
cluttered scenes more extensively (greater gaze dispersion), their
fixations were further from each other (longer average saccade
length) and shorter in duration (shorter fixation durations) com-
pared to uncluttered scenes. These results suggest that participants
favored widespread scanning at the expense of scanning carefully
under highly cluttered conditions. This pattern reflects the classic
exploration-exploitation dilemma, according to which the time al-
located for exploration limits the time available for scrutinizing
certain locations [Berger-Tal et al., 2014; Cohen et al., 2007; Gameiro
et al., 2017]. Further support for this trade-off comes froma closer
inspection of the average saccade lengths and fixation durations
that participants made, in line with the ambient-focal visual scene
processing hypothesis. Based on this hypothesis, short fixation dura-
tions followed by large saccades are indicative of ambient scanning
(exploration), whereas long fixations followed by short saccades
are indicative of focal scanning (inspection) [Krejtz et al., 2016; Un-
ema et al., 2005]. Thus, our results indicate that in cluttered scenes,
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participants adopted an ambient scanning strategy (extensive ex-
ploration), while in uncluttered scenes they used focal scanning,
which has been linked to more focused viewing patterns.

Next, we examined the quality of memory representations that
participants formed after learning the location of targets within clut-
tered/uncluttered scenes. Interestingly, participants formed more
precise memories of target locations in uncluttered than in clut-
tered scenes during the CR task. The findings from the SBL task
in conjunction with those in the CR task suggest that ambient
scanning (exploration) of cluttered scenes during SBL resulted in
less precise memories for target locations, whereas focal scanning
(inspection) of uncluttered scenes resulted in more precise memory
representations. This pattern of results adds significantly to the
literature [Fehlmann et al., 2020; Ramey et al., 2020] as it shows
that exploratory scanning of a scene during encoding relates to
poorer memory performance at recall, and highlights scene clutter
as a potential factor that can alter exploratory gaze behavior dur-
ing learning with downstream effects in the quality of long-term
memory representations. The underlying process supporting our
finding may be that greater exploration in cluttered scenes in the
SBL task reflects participants’ effort to resolve the clutter and detect
the target and is not necessarily a sign of more distributed atten-
tional allocation in favor of sampling more visual information for
the upcoming memory task. Further research is needed to examine
this hypothesis.

Finally, we looked at the relation between the three eye move-
ment metrics we measured in the SBL task and memory precision
for target locations in the CR task. The best prediction models re-
vealed that the slope of spatial density across blocks, that is, how
gaze dispersion improved over the blocks, and the spatial density
in the last learning block (4th) were the only significant predictors
of memory precision in both clutter scenes. More specifically, the
less scattered the fixation locations became over blocks and the less
dispersed they were in the last learning block, the more precise the
memory representations were. Importantly, these two predictors ac-
counted for more than half (51% in cluttered, 54% in uncluttered) of
memory precision variance. Our findings emphasize the predictive
power of spatial density and identify it as a strong candidate for
tracing the effects of VC (or complexity, in general) on long-term
memory in naturalistic complex environments, such as images of
scenes, Virtual/Augmented Reality applications or real-world sce-
narios, using eye-tracking [for a similar application of this metric
in a simulated procedure, see Diaz-Piedra et al., 2017; for recent
applications using gaze entropy in Virtual Reality, see Harris et al.,
2021; Chung et al., 2022].

5 CONCLUSION
VC is an inherent attribute of the environments that we live in.
We manipulated the amount of VC in images of naturalistic scenes
to track down its effects on learning and later recalling of target
locations, as well as on certain eye movement metrics. The present
study is, to the best of our knowledge, the first to show that VC
in images of complex, naturalistic scenes influences how people
search for targets embedded in these scenes and negatively impacts
the quality of the representations formed in long-term memory.
Specifically, our results suggest that VC influences the long-term

learning of target locations by affecting primarily the spatial disper-
sion of gaze (spread metric) and secondarily the way participants
look at certain locations to process information (directness and du-
ration metrics). These eye gaze markers are therefore particularly
helpful to be used in studies aiming to understand further how
VC may influence cognition. Indeed, here we identified aspects of
fixation spatial density during learning as significant predictors of
memory performance, further emphasizing the value of this under-
utilized eye tracking metric. Future applications can capitalize on
our finding by examining the usefulness of this metric in the con-
text, for example, of simulation-based skill assessment and training
programs, where both the amount of information available and
users’ gaze behavior are of primary interest, to maximize learning
outcomes. Finally, our findings showed that participants formed
more precise memories for previously studied targets in uncluttered
than in cluttered scenes. From a practical standpoint, our findings
indicate that decluttering our surrounding environment might al-
leviate the detrimental impact of VC on cognitive processes like
learning and memory and promote a more cognitive-friendly way
of living.
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